Crypto Trends

MLLM Adapters: Review of VPGs and Multimodal Fusion


Abstract and 1 Introduction

  1. Related Work

    2.1. Multimodal Learning

    2.2. Multiple Instance Learning

  2. Methodology

    3.1. Preliminaries and Notations

    3.2. Relations between Attention-based VPG and MIL

    3.3. MIVPG for Multiple Visual Inputs

    3.4. Unveiling Instance Correlation in MIVPG for Enhanced Multi-instance Scenarios

  3. Experiments and 4.1. General Setup

    4.2. Scenario 1: Samples with Single Image

    4.3. Scenario 2: Samples with Multiple Images, with Each Image as a General Embedding

    4.4. Scenario 3: Samples with Multiple Images, with Each Image Having Multiple Patches to be Considered and 4.5. Case Study

  4. Conclusion and References

\
Supplementary Material

A. Detailed Architecture of QFormer

B. Proof of Proposition

C. More Experiments

2. Related Work

2.1. Multimodal Learning

Recently, various vision-language models (VLMs) have been proposed to enhance the fusion of text and images. For example, TCL [42] employed triplet contrastive learning to simultaneously learn from text and images. Many state-ofthe-art MLLMs have also emerged, with one major distinction lying in the design of VPGs. For instance, FROMAGe [18] and LLaVA [24] employ a straightforward linear projection as their VPGs. On the other hand, Flamingo [2] introduces the novel use of the Perceiver Resampler, incorporating cross attention and learnable query embeddings. BLIP2 [22] innovatively employs the QFormer to improve image-text alignment. Meanwhile, MiniGPT-4 [48] integrates a frozen QFormer with additional learnable layers for enhanced performance.

\
While successful in diverse tasks, current multimodal models are primarily designed under the assumption of a one-to-one relationship between texts and image inputs. In reality, the relationship between text and images can be one-to-many or many-to-many. Effectively applying multimodal models in such scenarios poses an open challenge.

\

:::info
Authors:

(1) Wenliang Zhong, The University of Texas at Arlington (wxz9204@mavs.uta.edu);

(2) Wenyi Wu, Amazon (wenyiwu@amazon.com);

(3) Qi Li, Amazon (qlimz@amazon.com);

(4) Rob Barton, Amazon (rab@amazon.com);

(5) Boxin Du, Amazon (boxin@amazon.com);

(6) Shioulin Sam, Amazon (shioulin@amazon.com);

(7) Karim Bouyarmane, Amazon (bouykari@amazon.com);

(8) Ismail Tutar, Amazon (ismailt@amazon.com);

(9) Junzhou Huang, The University of Texas at Arlington (jzhuang@uta.edu).

:::


:::info
This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

\

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button